\(\int \frac {x^9}{1-2 x^4+x^8} \, dx\) [291]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 16, antiderivative size = 32 \[ \int \frac {x^9}{1-2 x^4+x^8} \, dx=\frac {3 x^2}{4}+\frac {x^6}{4 \left (1-x^4\right )}-\frac {3 \text {arctanh}\left (x^2\right )}{4} \]

[Out]

3/4*x^2+1/4*x^6/(-x^4+1)-3/4*arctanh(x^2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {28, 281, 294, 327, 213} \[ \int \frac {x^9}{1-2 x^4+x^8} \, dx=-\frac {3 \text {arctanh}\left (x^2\right )}{4}+\frac {3 x^2}{4}+\frac {x^6}{4 \left (1-x^4\right )} \]

[In]

Int[x^9/(1 - 2*x^4 + x^8),x]

[Out]

(3*x^2)/4 + x^6/(4*(1 - x^4)) - (3*ArcTanh[x^2])/4

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^9}{\left (-1+x^4\right )^2} \, dx \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {x^4}{\left (-1+x^2\right )^2} \, dx,x,x^2\right ) \\ & = \frac {x^6}{4 \left (1-x^4\right )}+\frac {3}{4} \text {Subst}\left (\int \frac {x^2}{-1+x^2} \, dx,x,x^2\right ) \\ & = \frac {3 x^2}{4}+\frac {x^6}{4 \left (1-x^4\right )}+\frac {3}{4} \text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,x^2\right ) \\ & = \frac {3 x^2}{4}+\frac {x^6}{4 \left (1-x^4\right )}-\frac {3}{4} \tanh ^{-1}\left (x^2\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 39, normalized size of antiderivative = 1.22 \[ \int \frac {x^9}{1-2 x^4+x^8} \, dx=\frac {1}{8} \left (2 x^2 \left (2+\frac {1}{1-x^4}\right )+3 \log \left (1-x^2\right )-3 \log \left (1+x^2\right )\right ) \]

[In]

Integrate[x^9/(1 - 2*x^4 + x^8),x]

[Out]

(2*x^2*(2 + (1 - x^4)^(-1)) + 3*Log[1 - x^2] - 3*Log[1 + x^2])/8

Maple [A] (verified)

Time = 0.05 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.09

method result size
risch \(\frac {x^{2}}{2}-\frac {x^{2}}{4 \left (x^{4}-1\right )}-\frac {3 \ln \left (x^{2}+1\right )}{8}+\frac {3 \ln \left (x^{2}-1\right )}{8}\) \(35\)
default \(\frac {x^{2}}{2}-\frac {1}{8 \left (x^{2}+1\right )}-\frac {3 \ln \left (x^{2}+1\right )}{8}-\frac {1}{8 \left (x^{2}-1\right )}+\frac {3 \ln \left (x^{2}-1\right )}{8}\) \(41\)
norman \(\frac {-\frac {3}{4} x^{2}+\frac {1}{2} x^{6}}{x^{4}-1}+\frac {3 \ln \left (x -1\right )}{8}+\frac {3 \ln \left (x +1\right )}{8}-\frac {3 \ln \left (x^{2}+1\right )}{8}\) \(41\)
parallelrisch \(\frac {4 x^{6}+3 \ln \left (x -1\right ) x^{4}+3 \ln \left (x +1\right ) x^{4}-3 \ln \left (x^{2}+1\right ) x^{4}-6 x^{2}-3 \ln \left (x -1\right )-3 \ln \left (x +1\right )+3 \ln \left (x^{2}+1\right )}{8 x^{4}-8}\) \(70\)

[In]

int(x^9/(x^8-2*x^4+1),x,method=_RETURNVERBOSE)

[Out]

1/2*x^2-1/4*x^2/(x^4-1)-3/8*ln(x^2+1)+3/8*ln(x^2-1)

Fricas [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 46, normalized size of antiderivative = 1.44 \[ \int \frac {x^9}{1-2 x^4+x^8} \, dx=\frac {4 \, x^{6} - 6 \, x^{2} - 3 \, {\left (x^{4} - 1\right )} \log \left (x^{2} + 1\right ) + 3 \, {\left (x^{4} - 1\right )} \log \left (x^{2} - 1\right )}{8 \, {\left (x^{4} - 1\right )}} \]

[In]

integrate(x^9/(x^8-2*x^4+1),x, algorithm="fricas")

[Out]

1/8*(4*x^6 - 6*x^2 - 3*(x^4 - 1)*log(x^2 + 1) + 3*(x^4 - 1)*log(x^2 - 1))/(x^4 - 1)

Sympy [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.06 \[ \int \frac {x^9}{1-2 x^4+x^8} \, dx=\frac {x^{2}}{2} - \frac {x^{2}}{4 x^{4} - 4} + \frac {3 \log {\left (x^{2} - 1 \right )}}{8} - \frac {3 \log {\left (x^{2} + 1 \right )}}{8} \]

[In]

integrate(x**9/(x**8-2*x**4+1),x)

[Out]

x**2/2 - x**2/(4*x**4 - 4) + 3*log(x**2 - 1)/8 - 3*log(x**2 + 1)/8

Maxima [A] (verification not implemented)

none

Time = 0.18 (sec) , antiderivative size = 34, normalized size of antiderivative = 1.06 \[ \int \frac {x^9}{1-2 x^4+x^8} \, dx=\frac {1}{2} \, x^{2} - \frac {x^{2}}{4 \, {\left (x^{4} - 1\right )}} - \frac {3}{8} \, \log \left (x^{2} + 1\right ) + \frac {3}{8} \, \log \left (x^{2} - 1\right ) \]

[In]

integrate(x^9/(x^8-2*x^4+1),x, algorithm="maxima")

[Out]

1/2*x^2 - 1/4*x^2/(x^4 - 1) - 3/8*log(x^2 + 1) + 3/8*log(x^2 - 1)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 35, normalized size of antiderivative = 1.09 \[ \int \frac {x^9}{1-2 x^4+x^8} \, dx=\frac {1}{2} \, x^{2} - \frac {x^{2}}{4 \, {\left (x^{4} - 1\right )}} - \frac {3}{8} \, \log \left (x^{2} + 1\right ) + \frac {3}{8} \, \log \left ({\left | x^{2} - 1 \right |}\right ) \]

[In]

integrate(x^9/(x^8-2*x^4+1),x, algorithm="giac")

[Out]

1/2*x^2 - 1/4*x^2/(x^4 - 1) - 3/8*log(x^2 + 1) + 3/8*log(abs(x^2 - 1))

Mupad [B] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 26, normalized size of antiderivative = 0.81 \[ \int \frac {x^9}{1-2 x^4+x^8} \, dx=\frac {x^2}{2}-\frac {x^2}{4\,\left (x^4-1\right )}-\frac {3\,\mathrm {atanh}\left (x^2\right )}{4} \]

[In]

int(x^9/(x^8 - 2*x^4 + 1),x)

[Out]

x^2/2 - x^2/(4*(x^4 - 1)) - (3*atanh(x^2))/4